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1. INTRODUCTION

The result. Let XyseooaXy be r points in Rd, and A be

A
a class of Borel sets in Rd. Denote by & (xl....,xr) the

number of distinct sets in {{xl.....xr}n A, AeA}l. Define

mA(r) = max
xl,...,xreR

d AA(xl.....x ).

r

Vapnik and Chervonenkis (1971) showed that either mA(r) = 2F
for any positive integer r or mA(r) < rs+1, where s is the
smallest k such that mA(k)#Zk. A class of sets A for which
the latter case holds will be called a V-C class with index s.
o Suppose that y is a probability measure on Rd. Let
Xl.Xz,... be a sequence of i.i.d. random vectors with common

distribution u, and ' be the empirical distribution of

! Xys+--2X,. Denote a "distance” between u and u by

D, (A,u) = z::luﬂ(A) - u(A)].

Throughout this paper we assume that Dn(A'H)-SUPlun(A)'UZH(A”
AcA

and sup “n(A) are all random variables. We shall prove the
AcA

following

Theorem 1. Let A be a V-C class with index s such that

. Sup u(A) < & < 1/8. (1)

i AcA

Ej Then for any ¢ > 0 we have

q PCD, (A,u)>e} < 5(2n) exp(-ne?/(916+4e))  (2)

i + 7(2n)%exp(-6n/68)

- + 22%801¥ 2545 (-5n/8),
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provided n > max (120/¢, 68(1+sX10g 2)/8).

The proof of (2) is based on an important inequality proved by Devroye and
Wagner (1980).
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2. HISTORICAL NOTES

A few remarks concerning this inequality are in order. In 1971, Vapnik and

Chervonenkis proved that, for any ¢ > 0
P{D_(A,u) > €} < 4exp(-ne2/8) EAA(X X, ) (3)
n 'u - 1’.--’ 2“ .

This inequality is quite general since no restrictions such as (1) are imposed.
In using this inequality, an extimate of mA(n) must be given, see, for example,
Gaenssler and Stute (1979), Wenocur and Dudley (1981).

The weakness of (3) lies in the fact that, in many applications ¢ = sn+0 as
e, In this case neﬁ may not tend to «» or tend to ~ very slowly. For this reason,
the inequality proved by Devroye and Wagner (1980) is sometimes more useful. They
proved that, ifsup, u(A) < 6 <%, then for any e > 0

P{D, (Aw) > €} < &n™(2n)exp(-ne?/(645+4c))
(4)
+ 2P{Sup, uy (R) > 26} '

for n > 86/:2. If we further have

Sup Sup [[x-y|| < p <=
AcA x,yeA |

and

Sup u(S(x,p)) < 6 <%, (5) o
xeR i

here ||+|| is the L, or L_ norm in Rd. and S(x,p) is the closed ball with radfus o
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centered at x, then

P{D, (A,u)>e} < 4m(2n)exp(-ne?/(645+4¢))
(6)
+ 4n exp(-ns/10)

for n > max (1/6,86/52).
This inequality is most useful when A is the class of balls with the same
diameter (norm L, or L_). Otherwise & may be much larger than Sup, u(A), and (6)

gives no improvement over (3). Chen and Zhao (1984) made an essential improvement

in the one-dimensional case:

1

Let A be a class of intervals in R™, satisfying Sup u(I) < & < 1.

IeA

Then there exists positive absolute constants ce,cl,...,c4 such that for any ¢ > 0

P{S I) = w(I)] > €}
I:glun( ) - u(I)] > ¢ 7)

5,C1e'1¢67n exp(-cznezls) + C3 exp(-C4ne),

provided n/log n > Co/e.

The proof of (7) relies on a result concerning the strong approximation to

Brownian bridge of the empirical process on Rl. The argument fails in the general

case d > 1. The inequality (2), to be proved in the next section, gives a

satisfactory generalization to the case d > 1.
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3. PROOF OF THEOREM 1

Set

) -j
*2h 42 8§, j=1,2,...,r,

where r will be chosen later. Then
6<51<62<...<6r<26_<_15

When n > 126/¢% we have n > 861/e2. From (4), the definition of V-C class
and the fact that

Sup, u(A) <8y <%,
it follows that
P{Dn(A.u)>e} 5_4{(2n)s+1} exp(-nezl(6461+4c))
+ 2P{Supy uy (A) > 28,1}
< 5(2n)%exp(-ne?/(64/T844c)) + 21D, (Au) > &},

provided n > 126/¢.
When &n > 68(1+s)log 2, we have Zj'ln > 86j/6§_1 for j = 2,3,...r. As before,
from (4) and Sup, u(A) < 8, < %, it follows that

PID, (Asm) > €} < 5(2n)%exp(-nc?/(915+4¢))
+(2-5X2-2n) exp(-2ns2/ (645,446, ))

2
+ 2°P(D , (A,u) > &8,},
Zzn 2
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provided n > max(68(1+s)10g2/s, 125/¢2).

Using (4) and Sup, u(A) < sj < % repeatedly, we obtain

PID_(A,n) > €} < 5(2n)Sexp(-ne?/(916+4e))

(8)
r-1 ,J J,on1S J .2
+ }:j=1 27.5(2%+2n) exp(-2 nsj/(686j+1))
+2" PO (Aw) > 63 =d  +d, +
on Wl > 8, 1,n ¥ 92,n * 93,00
provided n > max(68(1+s)log2/s, 126/;2).
It is easy to see that
263/, 2 238, §l,..., vl (9)

Hence it follows from (8). (9) and 21 6"/68 that

2,0 < 5(2n)° Z 2“*5’j exp(- 2Jnezl(sasJ+l))

IA

s(2n)® 13,y (2%%)) exp(-256n/68)

IA

5(2n)5 Z;sl exp(-jsn/68)

s(zn)se-én/58(l_e-Gn/68)-1

5(2n)5(1-2-(1*8)y-14-6n/68

Ia

7(2n)3exp(-5n/68),

Ia

]
e

where s > 1 is invoked.

When &sn > 68(1+s)10g2, we have Zrnsr > 2. By (3)
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: 7
Iy p < 21 ((2M1n)541) exp(-zrnsf/a). (11)
P
Take r = r_ to be an integer such that n/2 < 2" < n, When sn > 68(1+s)10g2,
we have nzsf 22, n8 > v/Z and nsf > 28. By (11) we have
7 Iy < 2n((2n2)5+1) exp(-nzsfllﬁ) (12)
< 4n(2n?)%exp(-8n/8).

Formula (2) follows from (8), (10) and (12). The theorem is proved.
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4. APPLICATIONS

Theorem 1 has some applications in strong convergence problems involving
the uniform deviation between frequencies and probabilities of a class of events.
As an example, we consider the nearest neighbor (NN) density estimates proposed
by Loftsgarden and Quesenberry (1965). Suppose that X is a Rd-valued random vectors
with distribution u and unknown density function f. The so called NN estimate of

f(x) has the form
%n(x) = k/{n(Zan(x))d}, X = (xil),...,x(d))eﬁd, (13)

where k = kn < n is a positive integer chosen in advance, an(x) is the smallest

a > 0 such that the cube [x-a,x+a] = n?

=llx(l)-a,x(i)ﬂ] contains at least k sample
points. As an application of Theorem 1, we prove a theorem about the convergenrre

rate of Sup 4 i%n(x) - %(X)l
xeR

In the sequel; we use c, a, C1s Cos .- for some positive constants independent
of nand x. For x = (x(l),....x(dsst. y = (y(l)....,y(d))eRd, write

£ (x)y-x) = Z?,l ;i%?y (y(i)-x(i)). and take ||y - x|]| = max1<i<d|y(i) - x(i)l,
X i<

We say that the density function f belongs to A-class for some 1e(0,2], if xe(0,1] and

| fty) - f(x)] < C||y°xllx for any X,yeRd, or re(1,2] and, f are bounded and
|f(y) - f(x) - £ (x)(y-x)] <C|ly - x|}

for any x.yeRd. We have

Theorem 2. Suppose that f belongs to A-class for some re(0,2]. Take k = o(n) and

K/n > g (H)%_n_)(d+k)/(d+3)\) (14)




where 8 > 0 is any given constant. Then

n, \A/(d+) p :
liﬂ*zup{( /k) S:plfn(x) - f(x)|} < C a.s. (15)

To prove this theorém. we need the following lemma. In the sequel, My denotes

the empirical measure of Xl....,Xn. Besides, a cube of the form [x-a,x+a] is

called a regular cube.

Lemma 3. Let A be a class of regular cubes satisfying the measurability

conditions mentioned in paragraph 1 and the condition

Supp 4 #(A) < k/n < 1/8.
Take k = o(n) and

k/n > 8 (1_ong_q>1/(1+2r). (16)
where r > 0 and 8 > 0 is any given constant. Then

Tim sup{(E)1+r suplun(A) - u(A)[} < € a.s.
o AcA

Notice that A is a V-C class, one can obtain Lemma 3 from Theorem 1 immedi-

ately. The proof is omitted.

Proof of Theorem 2. Take k =0 (n) and

k/n > B(1ogn/n) (d+r)/(d+32)

Put

v = eil(k/n)x/(dﬂ)

q, = 8,V = eilez(k/n)xl(d+x)




B, = {x: f(x) >V}

i | where 9, eze(o,l) will be chosen later.

P [x-a,x+a] respectively. Put M = max(S;'P f(x),1). We have

Sup 2 -
P{XEBnlfn(x) f(x)] > qn} <1+

where

I, = P(stBn{fn(x) > f(x) + qn}).

Jy = P(UxeBn{fn(x) < f(x) - q}).
Thus

I, < P(UxeBn{an(x) < b (x)1),
where

2 (x) = by (Lrgy/e(x)) 131/,

Fix xeB = {x: f(x) > V }. Take s,

1/(1+t) <1-7t/8 for 0 <t < 1/8, we have

2b, (x) < {epsy (1-79,/8F(x))} 1/

< (k/nf(x))/d,

It follows that
x+b_(x)

ob (x)) = N of(t)dt
w(x,b_(x)) Jx_bn(x) (t)

..........................................

(17)

(18)

(19)

< 1/8, then qn/f(x)‘i 8, < 1/8. Noticing

Let u(x,a) and un(x,a) be the probability measure and empirical measure of
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b (an(X))df(x) + cz(an(x))d+A

(26, (x)F(x) 11 + (20 (x))*/£(x)]

A/d

< F(1- g q/FONIHC, (rbor) M4 (x))

< &1 § au/F0) + Colapbey™ 0.
Fix 6,, take o, small enough such that C,6 l(l+d)/d < % 8, then Cz(ﬁ?%;y)lld
<G8 A/d(k/ )A/(A+d) § e 1y (k/n)l/(d+k) ﬁ'qn' It follows that

u(x,b, (x)) < £(1- 1 q /£(x)) < k/n,
and

k
7 - u{x,b,(x)) > kq /(2nM).
Hence, by (19) and Theorem 1, we have

In < PISup (up(xsb (x)) - u(x,b (x)) > ka /(2nM)}
XEB

n(ka,/ p)’

a
< Cgn™{exp(- w+2kq 7

) + exp(-k/68)}
M
where o is a constant depending only on d. In view of (14), we have for large n
I, <Con®exp(-e] o2 2g1+20/ (d1)304n /a00)

+ exp(-k/68)}.

Take e1 small enough, we have
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In the same way, we can take 61 and 8, such that

}:Jn<m

By (17), (18), (20) and (21), we have

ZP{QEISup I%n(x) - f(x)] > 1} < =,
xeBn

By Borel-Cantelli's lemma,

. =1
liw*zpp{qn

n

Fix 8;, 6,, and take 2b = c3(k/n)1’(d**). Fix xeBS = {x:

small C3 we have

b
u(x,bn) = Jx+ " £(t)dt

x-bn

d d+)
< (26)°%(x) + cy(2b )

k, -1.d d+x
5-i[°1 C3 + C2C3 ] < k/2n < k/n,

Taking r = A/(d+1) in Lemma 3, we can assert with probability one that, for n large

enough, the inequality

u(xsbp) < u(x,b.) + 2c1(k/n)(d+21)/(d+x)

< k/2n + zcl(k/n)(d*z‘)/(d**) < k/n

holds uniformly for xeB:. By definition, for xeB:.

Sup I%“(x) - f(x)|} <1 a.s.
xeB

(20)

(21)

(22)

f(x) < Vn}. With
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13
a(x)>b = % c3(k/n)1/(d+x).

F(x) > Cy(kym)M/ (48

It follows that

A/ (d+2) 2
Hrr‘n_mSup{(n/k) Supclfn(x) - f(x)|} < Cy a.S.

XeBn

(23)

Theorem 2 is proved in view of (22) and (23).
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